
LBL-10523
Preprint

Submitted to Computerworld

OBFUSCATORY MEASUREMENT: THE STATE OF THE ART

BEF~f\ELEY L.ABOf~AT(\RV
D. F. Stevens

2 8 1980

February 1980

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

wh may be borrowed two weeks.

a personal retention copy, call

Tech. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any wanamy, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-10523

Submitted to Computerworld

Obfuscatory Measurement: The State of the Art*

D. F. Stevens

Lawrence Berkeley Laboratory
University of California

Berkeley, California

February, 1980

* This work was supported by the U. S. Department of Energy under con­
tract No. W-7405-ENG-48.

-2- LBL-10523

Obfuscatory Measurement: The State of the Art*

D. F. Stevens
Lawrence Berkeley Laboratory

University of California
Berkeley, California

February, 1980

In its monumental issue introducing the 80's Computerworld (inadvertently,

one hopes) failed to include a discussion of one of the principal trends in

modern computer performance management, namely the flowering of obfuscatory

measurement. As a whilom practitioner of that art, and as its principal

(if not, indeed, its only) historian, I am pleased to have this opportunity

to rectify that oversight. In this article I will first say a few words

about the infancy of performance management and obfuscatory measurement,

then look briefly at a few of the most popular current obfuscatory meas-

ures, discuss the foundations of obfuscatory measurement, and, finally,

suggest some opportunities for the obfuscators of the future in the areas

of distributed processing, data base applications, and word processing sys-

terns.

In the beginning

In the beginning was the Vendor, and the Vendor's word was unquestioned,

and the Vendor's word was "move iron!" Performance management consisted of

noticing that the work wasn't getting done and calling on the vendor for

assistance. It is not really very surprising that that assistance usually

took the form, after a suitable interval of scholarly-appearing activity,

* This work was supported by the u.s. Department of Energy under con­
tract No. W-7405-ENG-48.

-3- LBL-10523

of additional hardware. It is somewhat surprising that the customers were

so long in realizing that vendors exist to vend, and that perhaps an objec­

tive look at what was going on would be desirable.

But the questioning of authority is a contagious disease. Shortly after

the DP departments begin questioning the pronouncements of the vendorc, the

users began questioning the pronouncements of the DP departments. The

aroused user is a dangerous beast, capable of nearly superhuman feats ••••

Capable, even, of taking computing into her own hands should the provoca­

tion be sufficient. It was in the search for suitably soothing salves that

obfuscation began, and the purpose of obfuscatory measurement has remained

steadfast from that day to this: to divert the users' attention from the

true state of the system with an imposing array of numbers, presented with

a certain fervor and a modicum of quasi-religious awe.

The obfuscator is assisted in this task by the universal bureaucratic

preference for numbers over judgement. ("Quality of service" is a subjec­

tive entity; one who presumes to judge it is subject to being overruled.

"CPU utilization", on the other hand, is not a judgement but a determinable

numeric quantity. (Better still, the means by which it is determined are

under the control of the DP department.] It is, therefore, a Comfortable

Construct, and hence much used in the world of obfuscation.) He--the

obfuscator--can even call on Lord Kelvin for moral support: "When you can

measure what you are speaking about, and express it in numbers, you know

something about it; but when you cannot measure it, when you cannot express

-4- LBL-10523

it in numbers, your knowledge is of a meagre and unsatisfactory kind."[l] A

consequence of modern Kelvinism is the sense of heightened importance

imparted to a quantity by the mere fact that it is being measured. Unmeas-

ured qualities pale, unlamented, into insignificance when faced with

detailed plots of interrupts per initiator or passwords per protocol.

One other contributory, perhaps accidental, to the development of obfusca-

tory measurement is the complexity of the systems measured. In the ideal

world, one would be able to measure directly the quantities of presumed

interest. In the world of computing those quantities are often well-

protected and inaccessible. One must, instead, measure either their causes

or their effects.

As indicated in Figure 1, the (inaccessible) interesting quantities are

often the products of several (accessible) causes and give rise to (some

aspects of) several (accessible) effects, but the relationships are quite

diffuse. For example, one quantity which is generally thought to be

interesting is the amount of user work passing through the system. That it

is at present unmeasurable is unquestioned. So we measure various causal

quantities (jobs, tasks, or sessions; overhead activities; queries; tran-

sactions; degree of multiprogramming) and various visible products (CPU and

channel utilization; ABENDS; response time) and perform some unmentionable

calculations therewith to produce our obfuscatory reports. And, indeed, it

[l]But the truly competent obfuscator is also aware of opposing views.
This, from Daniel Yankelovich, for instance: "The first step is to measure
whatever can be easily measured. This is okay so far as it goes. The
second step is to disregard that which can't be measured or give it an ar­
bitrary quantitative value. This is artificial and misleading. The third
step is to presume that what can't be measured easily isn't very important.
This is blindness. The fourth step is to say what can't be measured
doesn't exist. This is suicide."

LBL-10523

works: bamboozled by "97% success ratio" ((submissions

ABENDS)/submissions) and "83% saturated" (CPU utilization) the users go

away knowing something is wrong but having no loose end to grasp.

The most popular obfuscatory measures £1 the lQ'~ (in alphabetical order)

1. Availability

Usually expressed as a percentage, "availability" is taken by the

uninitiated to indicate the amount of time the system is usable,

whereas in fact it indicates the amount of scheduled time the system

is available to the computer center. By reducing the base to

scheduled time a significant increase in percentage is obtained. It

is further increased by including many periods of time when the system

is not, in fact, fully usable: start-up times, time spent re-running

lost or interrupted jobs, and time devoted to the "run-down" before a

scheduled interruption. Figure 2 illustrates the cumulative effect of

all these adjustments. It shows a week in the life of a one-shift

operation, with one period of preventive maintenance (PM), a daily

system development shot (SD), two unscheduled periods of down-time (15

minutes on Tuesday and an hour on Friday); start-up requires half an

hour, and "run-down" starts a half-hour before system development time

and an hour before the end of the shift. Naive and obfuscatory meas­

ures stand in rather sharp contrast.

2. Average Response Time

This has superseded "turnaround time" as the most commonly quoted

measure of turnaround, but the principles of use are the same. Its

obfuscatory nature depends essentially upon the fact that the mean can

-6- LBL-10523

easily be manipulated by stacking the extremes. To be specific, you

can achieve essentially any average response time you wish by requir­

ing a suitable number of trivial interchanges--with zero response

time--to take place during any interactive session. The obfuscator

also has a great deal of flexibility in the definition of the event

that "response time" is monitoring. I have seen it variously defined

as

~ acknowledgement of the command/request

~ commencement of the process

~ first character of (process) output

~ last character of (process) output

The first and third of these are most in keeping with the obfuscatory

art; the third is especially so if the process is designed to give an

instantaneous preliminary response.

Another fact to be borne in mind is that, in some situations, response

which is too quick creates tension, which causes errors ••• and errors

lead to wasted work, thus bringing saturation (and hence the opportun-

ity for growth) ever closer. (A better strategy, however, is to

strive for consistently unexpected response time, whether it be

quicker or slower than anticipated ••• but this is somewhat off the sub­

ject of this article.)

3, Channel Activity

A utilization measure, and thus inherently obfuscatory, channel

activity also exploits certain limitations in hardware design. For

while it appears to measure data traffic, it in fact merely measures

LBL-10523

the time a certain hardware flag (the "channel busy" flag) is set.

The actual relationship between channel activity and data traffic can

be quite complex, depending not only upon the speed of the attached

devices but also upon the housekeeping tasks which utilize the chan­

nel. The data traffic is always less than indicated by the obvious

calculation (device speed multiplied by channel active time): indeed,

it can sink to well below 10% of that number.

4. Depth of Multiprogramming; Overlap

These two measures are grouped together not because they are thought

to be equivalent (they are not), but because they address the same

problem: a vague understanding on the part of upper management that

some multiplicity[2] of processing is desirable. They make a good

combination, not only because they obfuscate in different ways, but

also because the two together give no more accurate a picture than

either one singly.

Overlap is in fact somewhat less obfuscatory than depth of multipro­

gramming, for it measures the percentage of time that some amount of

simultaneity is experienced; it does not, however, consider the level

of simultaneity. (Thus two simultaneous processes are every bit as

good as seven.) It may be this very touch of honesty, paradoxically,

which makes overlap so useful as an obfuscatory measure.

Depth of multiprogramming, on the other hand, is pure obfuscation: it

counts initiators instead of processes. In many shops, large values

of depth of multiprogramming survive as tribute to the memory

[2]To an obfuscator, multiplicity is merely advanced duplicity.

LBL-10523

salesperson's art, while all the jobs lie quiescent awaiting the

pleasure of the Resource Manager or some other such system magus.

5. Efficiency

This is actually a vestige of the more distant past, but one which has

validity in some contexts, and adds a certain panache to many perfor­

mance measurement reports. It is often used in place of "utilization"

(the two are identical in meaning). (I would advise against using

them both to refer to the same quantity: such a juxtaposition might

inspire tiresome questions. "CPU utilization" and "channel effi-

ciency", on the other hand, provide a nice appearance of breadth.)

6. Lines of Code

This measure, being directed at human productivity, might be con­

sidered by some to be somewhat outside the scope of this article, but

programmer performance is an element of computer center performance

and lines-of-code is superbly obfuscatory. The reason for this is

that it does, in fact, measure productivity of a kind ••••

that will saturate your systems in a hurry.

The kind

A timid person might hesitate to use lines-of-code on the grounds that

it is patently absurd (is the Beer Bottle Song ["One hundred bottles

of beer on the wall. ••• "] better than a Shakesphere sonnet? a limer-

ick than a haiku? this article than the Gettysburg Address?),

inasmuch as it ignores quality. Such a person severely underestimates

the power of numbers to convince and confuse.

7. MTBI (Mean Time Between Interruptions

MTBF (the mean time between failures) is so well accepted as a

-9- LBL-10523

reliability measure in engineering contexts that practically no one

questions its DP analog, MTBI. That the causes of failure in the two

fields are largely unrelated is largely ignored: failures in mechani­

cal systems are caused by wear and fatigue (to which software is

impervious); failures in computing systems are caused by unexpected

input (to which mechanical systems are rarely exposed) and trivial

overflows (which, if they cause damage at all in mechanical systems,

cause trivial damage: will an overflow on the meter crash a taxi?).

The user-oriented measure which most closely corresponds to MTBI is

the mean (or median) service interval. To see how they compare, we

return to the sample week of Figure 2. The mean service interval,

even giving full credit for the run-down periods, is 2.23 hours

(26.75/12), and the median is 2.5. The conservative way to calculate

MTBI is to divide "hours availble" by "number of interruptions plus

1": 32.75/3 = 10.9 hours ••• more than three times as long as the long­

est service interval.

8. Saturation

The obfuscatory nature of "saturation" lies in the fact that satura­

tion is not a measure but a binary condition: the change in the qual­

ity of a service which moves from an unsaturated condition to a

saturated one is an abrupt discontinuity: service effectively stops

and the input queue becomes infinite. (We have all seen that happen

with expressway rush-hour traffic.) References to ''80 percent of

saturation" thus really mean "80 percent of capacity", and are doubly

obfuscatory because "capacity" changes with workload and environment.

It is not a configuration constant; any reasonable multiprogramming

-10- LBL-10523

system, for instance, has a smaller capacity when restricted to highly

compute-bound jobs than when fed a mixture of compute- and I/O-bound

work. The obfuscator exploits this phenomenon in other ways; it is

much less well-known, for example, that any multiprogramming system

strongly dominated by priority considerations has a smaller capacity

than a system free to assign requested resources (such as the CPU) in

an optimal fashion. (Is it any wonder that priority-dominated

scheduling is so popular?)

9. Turnaround Time

Since the good turnaround times are the small ones, this is a situa­

tion where the median, surprisingly enough, favors the obfuscator.

Nevertheless, I recommend sticking with the mean. For not only is the

median a dangerous precedent to set, the mean is, as we have seen

above, quite a tractable index. As in the case of response time the

enterprising manager can cause enough small jobs to be submitted to

achieve whatever mean turnaround time is deemed necessary. If this

fails to provide the desired result, in desperation one can always

define turnaround time in CPU terms, thus avoiding the semi-infinite

delays of many print queues.

10. Utilization

When the obfuscator is asked for measures of throughput she has ample

industry precedent for responding with measures of utilization. Util­

ization measures are advantageous because they reward ineffective pro­

gramming (which is much easier to obtain than the other kind). The

obfuscatory path here is not quite as free as it used to be, what with

the introduction of distinguishable "system" and "problem" states for

LBL-10523

CPU utilization ••• but it remains the case (thanks to your friendly

mainframe vendor) that much of what is called "problem state" is actu­

ally system overhead. And it seems extremely unlikely that anyone is

going to come up with a meter which distinguishes between "system" and

"problem" channel activity states!

The Fundamentals £f Obfuscation

Having seen the list of the ten best obfuscatory measures of the seventies,

you should be able to pick out the most likely newcomers for the eighties.

My selections follow, but first a quick resume of the underlying principles

of obfuscatory measurement.

1. Select your measures with care.

Not all measures are appropriate to all situations. You should neither

attack the fly with the cannon, nor the elephant with the feather­

duster. Tailor your measures to the tractability of your users and the

gullibility of your upper management ••• and always have a couple in

reserve, just in case •••• In particular, your measures should be

expressed in units which are well understood by your staff, and over

the consumption (or generation, as appropriate) of which they have

rather complete control. In so doing you create a climate in which

improvements in the measurements are practically assured. You can also

utilize the more traditional motivators: 100% CPU utilization can be

guaranteed, for example, by telling your system supervisor that her pay

will be her basic salary multiplied by the average CPU utilization for

the month.

2. Seek the advice of your mainframe vendor.

-12- LBL-10523

Remember, the vendors were the first great obfuscators, and they remain

members in good standing in this august fraternity. Furthermore, your

vendor holds your interests close to his heart, for he cannot sell you

additional equipment until your upper management is convinced of the

saturation and effective utilization of your existing configuration.

Furthermore, your vendor has a wealth of experience in dealing with

upper managements just like yours •••• Obfuscation is the very essence

of the salesperson's art; as you seek legal advice from a lawyer, you

should seek obfuscatory advice from your vendor.

3. Use the easiest measures.

The easier a measure is to obtain the more likely it is to be obfusca­

tory. (This is a rare favorable instance of Murphy's Law.) Two partic­

ular kinds of easy measures are worth special consideration: means and

percentages. As we saw in the discussion of Availability, suitable

definition of the base can turn any measurement into a praiseworthy

percentage. As for the mean, it frequently lacks meaning. Even though

the recent literature has exposed the obfuscatory nature of "indiscrim­

inate" use of statistical concepts, the mean is so beloved by the aver­

age person that its utility is expected to continue relatively undimin­

ished. One can still, for instance, report a favorable mean in prefer­

ence to a realistic median in most circumstances. It is generally use­

ful, in fact, to ignore all such distributional details as peaks,

extremes, modal values, and repetitive and seasonal patterns in favor

of the universal mean.

4. Exploit comfortable analogies.

Concepts which are meaningful in other fields can sometimes be

-13- LBL-10523

transferred into the computer performance arena, where they are

invalid, without loss of prestige. It helps, of course, if the concept

is so familiar that it is accepted without question in its new context.

MTBI is such a measure.

5. Pick evocative names for your measures.

The creative definition of measurement jargon is an indispensable ele­

ment of the obfuscator's arsenal ••• for the most misleading percentage

you can devise won't help you unless you can convince someone that it

measures something. If yours is an elementary situation, actual defin­

ition is not important: a catchy name is all that is required ••••

(Remember "CPU efficiency"? was there anything efficient about it? A

modern example is "depth of multiprogramming".)

If you find yourself in deeper waters, some measure of definition must

be supplied ••• but it is best if it is either ambiguous or incompletely

specified. ("Availability" as "percentage of time available" is, as we

saw, an excellent example of this technique.)

Obfuscatory Measures ~ Future

The most fruitful areas for the development of new obfuscatory measures are

those portions of the DP universe which have caught the public fancy but

for which there is no common agreement on terminology. In today's world,

Data Base, Distributed Processing, and Word and Text Processing would seem

to be the prime candidates, with Executive Information Systems coming along

rapidly. On the grounds that something should be left as an exercise for

the reader, I will not undertake to predict likely obfuscatory EIS meas­

ures, but will content myself with a few guesses in the other areas.

-14- LBL-10523

1. Word and Text Processing

a. Number of words in the spelling corrector

This measure is somewhat outside the mainstream of this article,

being a bit of vendor obfuscation unlikely to see much use in the

dialogue between the system guru and the user. But is perhaps

worth recording if only to show that the vendors continue to break

new obfuscatory ground. It is, of course, intended to prevent

deeper inquiry into the spelling system: How much does spelling

correction cost in time and space? How many of those words will I

never use? How much of my company's idiosyncratic vocabulary is

missing? How hard is it to add new words? Delete existing words?

How many of them are misspelled?

b. Documents per day

This is the text-processing equivalent of job and session counts.

The obfuscator need only provide a suitably fluid definition of

document to ensure that her productivity figure of merit will show

a gratifyingly steady upward trend. In this connection it is use­

ful to note that many word- and text-processing systems have facil­

ities for inter-office mail. One should perhaps exercise patience

here, and add messages to the document count only when the pressure

for productivity reaches fever pitch.

c. Keystrokes per hour

If you plan to use this one, you'd better be prepared to replace

space and backspace keys rather frequently, and you might as well

order systems with no tab facilities. (Why pay for a feature the

operators will ignore? Of course you can counter that ploy by

-15- LBL-10523

giving credit for tabbed-over blanks ••• at the cost of mid-page

indentation ••••)

d. Response time

This old favorite will measure the time from last keystroke to the

appearance of the first page of the first copy of the document,

thus sidestepping the true issue of concern (document delay time).

e. (To be supplied later)

This is another exercise for the reader, for I cannot figure out

how the practicing obfuscator can dodge the issue of the appearance

of the document. My guess is that he will stonewall it or try to

smother it under tons of productivity data. After all, time is on

his side •••• Within another generation no one will remember the

pride once taken in individually formatting documents on the basis

of amount of text, purpose, and intended audience. (Sigh.)

2. Distributed Processing

a. Message volume

As usual, activity will be quantified instead of qualified. Con-

cern over the content and information density will be submerged in

a welter of statistics on messages per hour, per node, or per

node-hour. Intricate diagrams of internodal traffic volume will be

used to overwhelm those concerned about possible mislocation of

files and data. Volume can then be increased by simply reducing

the maximum allowable information content per message.

often be done in the name of reliability.

This can

-16- LBL-10523

b. Reliability measures

As long as possible, reliability measures will be strictly

hardware-component-oriented; that is, reliability statistics will

be available on a node and link basis, rather than on a complete

transaction basis. This makes it possible to quote quite impres-

sive average reliability achievements even at a time when the users

are seeing essentially zero reliability. For example, if you are

dealing in 100-character messages over a two-hop path, a character

reliability of 99.5% can be achieved while end-to-end message reli­

ability drops to barely more than 3%. (There are five steps in a

two-hop path: two links and three nodes. 99.5% on the character

level can translate into a one-character error in half the messages

at each step ••• i.e. the probability of successfully negotiating

each step can be as low as .5; the probability of completing the

journey can thus be as low as [(.5)**5) = .03125.)

While on this topic, it is well to note that the obfuscator has a

choice of character-level or message-level reliability measures.

He should choose the one which best complements his error-pattern.

The key to the decision is the clumping tendency of the errors. If

errors tend to occur in bursts, then the character-error-to­

message-error ratio is high, and one should report message errors.

If errors tend to be isolated, on the other hand, the character­

error-to-message-error ratio is low, and you may wish to consider

reporting on character reliability instead. (The exact conditions

under which this becomes desirable are best left to the

obfuscator's discretion, inasmuch as a proper choice depends upon

-17- LBL-10523

the sophistication and docility of the users as well as upon the

error patterns.)

c. Step counts; complexity

A favorite ploy, early in the game, will be the "Can you top this?"

game, played with link and node counts. The number of steps nego­

tiated will become more important than the manner in which they are

negotiated. A perverse pride will even become evident in discus-

sions of the number of transformations or translations to which the

data must be subjected. Counts will reach incredible highs. As an

example of what can be done even when the system is not very widely

distributed, given suitable system architecture, consider the path

of an execution module in a large-scale Control Data batch instal-

lation. Two computers are traversed, a front-end and a mainframe;

each computer is comprised of peripheral processors (PPs) and a

central processor. The path from card-reader to execution contains

the following steps: card-reader, front-end PP, front-end buffer,

PP, front-end queue, PP, front-end buffer, PP, mainframe PP, main-

frame buffer, pp. mainframe queue, PP, mainframe for

execution ••• some 14 nodes in all. When you describe such convo­

luted paths in full detail your users become grateful that any mes­

sages get through unscathed.

d. Availability

The creative definition of availability will become both simpler

and more necessary as systems become ever more distributed.

Simpler, because one can adopt various component-oriented stra-

tegies. (A ten-element system, one element of which is always

LBL-10523

down, can be assigned nearly any availability score from 0 to 100%

by simply assigning suitable weights to the components. The wise

obfuscator will strive for weightings which give results in the

95-98% range.) Obfuscation will become more necessary because true

availability may be severely impacted by the necessity to stop

everything periodically to reconcile conflicting updates. I have

no doubt the obfuscators of the Eighties will rise to the occasion.

3. Data Base

(Data base is, of course, a true natural for obfuscation, for its prac­

titioners cannot even agree on the spelling of the name: data base,

data-base, database.)

a. Data dictionary size

I believe that both extremes will see currency in this area. Some

obfuscators will take pride in the manner in which they have

reduced the number of distinct data elements to a minimum.

(Perhaps some day one will receive the Turing Award for getting the

number down to two.) Others will take equal pride in the flexibil­

ity of systems which allow hundreds, or even thousands, of distinct

elements. The object, in either case, is to bewilder the users who

want only--but all--of the data elements they use.

b. Number of queries

This is good because it allows even erroneous accesses to contri­

bute to the productivity score. (Under no circumstances do we wish

to count only those queries which were successful in the sense of

giving the user the desired information in the desired form.)

-19- LBL-10523

c. Average response time, connect hours, number of enquiry stations,

In short, any obfuscatory measure which can be applied to any

interactive system will be applied to data base systems. Because

the user community will in many cases differ almost completely from

the traditional DP user community the experienced obfuscator will

experience little danger in making this transition.

d. Any measurement on a batch system

Any measurement on a batch data base system must be considered

obfuscatory in the sense that it diverts the attention of the users

away from the fact that they don't have an interactive system.

It seems unquestionable that the obfuscators among us will find the fields

of the future to be as fruitful as the orchards of the past, and that they

will continue to enliven our lives with {in the words of Pooh Bah) "corro­

borative detail, intended to add artistic verisimilitude to an otherwise

bald and unconvincing narrative."

c=) Causes

Quantities of interest

• f s
XBL 802

Figure 1: are we meas ng?

I
N
0

i

9

//­
/~

ON

I II I 1

= Preventive Maintenance
S. =System Development

3 5

6

-
= availa

Fi re 2: ilability

6

96°/o

802-355

I
N
-'
I

